Farabaugh Engineering and Testing Inc.

Project No. T299-11

Report Date: October 6, 2011

Total Pages (inclusive): 9

ASTM E330
STRUCTURAL PERFORMANCE TESTING

16” SIDING PANEL W/ NAIL GROOVE
0.032” ALUMINUM

FOR

PETERSEN ALUMINUM CORP.
1005 TONNE RD.
ELK GROVE VILLAGE, IL 60007

Report Prepared By:

Patrick J. Farabaugh

Reviewed and Approved By:

Daniel G. Farabaugh
Project No. T299-11

Purpose

This test method covers the evaluation of structural performance of the referenced test specimen per ASTM E330-02, “Standard Test Method of Exterior Windows, Doors, Skylights and Curtain Walls by Uniform Static Air Pressure Difference” and as provided herein.

Test Dates

9-29-11 to 10-3-11

Test Specimen

Manufacturer: Petersen Aluminum Corp.
1005 Tonne Rd.
Elk Grove Village, IL 60007

Panel: 16” Siding Panel w/ Nail Groove, 0.032” Aluminum (nominal)

Testing Apparatus

A vacuum test chamber was used with two static pressure taps located at diagonally opposite corners. A controlled blower provided a vacuum to uniformly load the specimen mock-up. Calibrated manometers were used to measure the pressure at each pressure tap. The uniform load pressure was performed in the negative direction to monitor wind uplift on the panel specimen mock-up. Calibrated deflectometers were attached to monitor panel deformation as shown.
Project No. T299-11

Installation

- The panels were installed on to 16 ga supports using #10-16 X 1” long pancake head self drill fasteners located on the panel nail groove. The panel side-joints were a tongue and groove type as shown on the attached detail.

- Plastic (4 mil thick) was employed loosely between the panels and subgirts and in the side joints to create a vacuum seal.

Procedure

- The test assembly was subjected to negative pressures to form an outward pressure at the values and time duration as shown in the attached table.

- Each pressure increment was held for at least 1 minute.

- Deflection movement of the assembly during the tests was recorded.

- Successive increments were achieved as above until failure or ultimate load was reached.
TEST “A”

Specimen: 16” Siding Panel w/ Nail Groove, 0.032” Aluminum
Support Spacing: 4 ft o/c
Panel Attachment to Support: #10-16 X 1” Self Drill Fasteners (2 per support)

NEGATIVE LOAD TEST

<table>
<thead>
<tr>
<th>LOAD (PSF)</th>
<th>D-1</th>
<th>D-2</th>
<th>D-3</th>
<th>D-4</th>
<th>D-5</th>
<th>D-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.2</td>
<td>0.048</td>
<td>0.144</td>
<td>0.051</td>
<td>0.389</td>
<td>0.426</td>
<td>0.495</td>
</tr>
<tr>
<td>9.0</td>
<td>0.0</td>
<td>0.002</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.4</td>
<td>0.109</td>
<td>0.291</td>
<td>0.078</td>
<td>0.665</td>
<td>0.757</td>
<td>0.783</td>
</tr>
<tr>
<td>15.6</td>
<td>-0.003</td>
<td>0.016</td>
<td>0</td>
<td>0.012</td>
<td>0.023</td>
<td>0.001</td>
</tr>
<tr>
<td>20.8</td>
<td>0.12</td>
<td>0.403</td>
<td>0.1</td>
<td>0.888</td>
<td>1.025</td>
<td>1.027</td>
</tr>
<tr>
<td>26.0</td>
<td>0.024</td>
<td>0.023</td>
<td>0</td>
<td>0.076</td>
<td>0.093</td>
<td>0.034</td>
</tr>
<tr>
<td>31.2</td>
<td>0.168</td>
<td>0.499</td>
<td>0.16</td>
<td>1.077</td>
<td>1.22</td>
<td>1.233</td>
</tr>
<tr>
<td>36.4</td>
<td>0.024</td>
<td>0.024</td>
<td>0</td>
<td>0.076</td>
<td>0.093</td>
<td>0.034</td>
</tr>
<tr>
<td>46.8</td>
<td>0.22</td>
<td>0.613</td>
<td>0.167</td>
<td>1.293</td>
<td>1.425</td>
<td>1.425</td>
</tr>
<tr>
<td>0.0</td>
<td>0.024</td>
<td>0.04</td>
<td>0.002</td>
<td>0.1</td>
<td>0.096</td>
<td>0.041</td>
</tr>
<tr>
<td>40.0</td>
<td>0.287</td>
<td>0.732</td>
<td>0.166</td>
<td>1.511</td>
<td>1.631</td>
<td>1.661</td>
</tr>
<tr>
<td>0.0</td>
<td>0.059</td>
<td>0.106</td>
<td>0.028</td>
<td>0.242</td>
<td>0.216</td>
<td>0.115</td>
</tr>
<tr>
<td>36.4</td>
<td>0.349</td>
<td>0.876</td>
<td>0.281</td>
<td>1.74</td>
<td>1.874</td>
<td>1.858</td>
</tr>
<tr>
<td>0.0</td>
<td>0.152</td>
<td>0.22</td>
<td>0.079</td>
<td>0.531</td>
<td>0.468</td>
<td>0.314</td>
</tr>
<tr>
<td>46.8</td>
<td>0.449</td>
<td>1.133</td>
<td>0.344</td>
<td>2.146</td>
<td>2.303</td>
<td>2.319</td>
</tr>
<tr>
<td>0.0</td>
<td>0.176</td>
<td>0.376</td>
<td>0.15</td>
<td>0.634</td>
<td>0.641</td>
<td>0.573</td>
</tr>
</tbody>
</table>

RESULTS:

Maximum Test Load = 48.3 psf (Panel pulled over fasteners)
TEST “B”

Specimen: 16” Siding Panel w/ Nail Groove, 0.032” Aluminum

Support Spacing: 1 ft o/c

Panel Attachment to Support: #10-16 X 1” Self Drill Fasteners (1 per support)

NEGATIVE LOAD TEST

<table>
<thead>
<tr>
<th>LOAD (PSF)</th>
<th>DEFLECTION READINGS (INCHES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D-1</td>
</tr>
<tr>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>10.4</td>
<td>0.038</td>
</tr>
<tr>
<td>0.0</td>
<td>-0.01</td>
</tr>
<tr>
<td>20.8</td>
<td>0.086</td>
</tr>
<tr>
<td>0.0</td>
<td>0.013</td>
</tr>
<tr>
<td>26.0</td>
<td>0.118</td>
</tr>
<tr>
<td>0.0</td>
<td>0.023</td>
</tr>
<tr>
<td>36.4</td>
<td>0.173</td>
</tr>
<tr>
<td>0.0</td>
<td>0.066</td>
</tr>
<tr>
<td>52.0</td>
<td>0.278</td>
</tr>
<tr>
<td>0.0</td>
<td>0.135</td>
</tr>
<tr>
<td>72.9</td>
<td>0.44</td>
</tr>
</tbody>
</table>

RESULTS:

Maximum Test Load = 74.8 psf (Panel sidejoint disengagement)
TEST "A"

PANEL SPECIMEN (TYP)

SUPPORTS (TYP)

CHAMBER FRAME

TEST ASSEMBLY

DEFLECTION POINT
TEST "B"

10 SPANS @ 1' OC

PANEL SPECIMEN (TYP)

SUPPORTS (TYP)

CHAMBER FRAME

D6 • D3
D5 • D2
D1 • D1

TEST ASSEMBLY

• DEFLECTION POINT
INBOARD SIDE

OUTB'D DETAIL

LAP DETAIL

OUTB'D DETAIL

APPROX. COIL WIDTH: 23.075'
ALUM. THICKNESS RANGE: .032" & .040
STEEL THICKNESS RANGE: .024" - .030
GRADE OF MATERIAL: 40 KSI MIN

This drawing contains proprietary information of A2S Machine Tools which may not be utilized in any manner without the written consent thereof. © COPYRIGHT

PETERSEN ALUMINUM BLDG.

16' SIDING PANEL
W/ NAIL GROOVE

9/14/10

PR2862 TP-2028

ALL DIMENSIONS ARE BOTTOM OF SHEET INTERCEPTS (U.O.A.).
ALL FORMING RADIUS 0.125" UNLESS OTHERWISE NOTED

TOLERANCE STANDARDS FOR THICKEST METAL:
× ACCUMULATION = (+ or -) 1/16 in
DEPTH = (+ or -) 1/32 in
RADIUS = (+ or -) 1/32 in
ANGLES = (+ or -) 2 degrees
CAMBER = 1/8 in. in 10 ft.
SKID = 1/8 in. in 10 ft.
DIVE = 1/8 in. in 10 ft.
NET VARIATION FOR COMBINED DIMENSIONS

□ APPROVED □ APPROVED AS NOTED

BY
DATE
TENSILE TEST REPORT

Client: Petersen Aluminum Corp.
1005 Tonne Rd.
Elk Grove Village, IL 60007

Test Date: October 6, 2011

Test Method: ASTM B557-10

Material Description: 16" Siding Panel w/ Nail Groove, 0.032" Aluminum

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Width (in)</th>
<th>Thickness (in)</th>
<th>Yield Load (lb)</th>
<th>Max. Load (lb)</th>
<th>0.2% Offset Yield Strength (psi)</th>
<th>Tensile Strength (psi)</th>
<th>Elongation (% in 2 inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0072-11</td>
<td>0.499</td>
<td>0.032</td>
<td>303.2</td>
<td>344.2</td>
<td>18,988</td>
<td>21,556</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Equipment Used: Tensile Machine #QT7-061196-020
Caliper #081410113-1
Extensometer #10311744D
Micrometer #52-222-001